Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.589
Filtrar
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 394-402, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38660904

RESUMO

OBJECTIVES: To compare the repair effects of different doses of human umbilical cord mesenchymal stem cells (hUC-MSCs) on white matter injury (WMI) in neonatal rats. METHODS: Two-day-old Sprague-Dawley neonatal rats were randomly divided into five groups: sham operation group, WMI group, and hUC-MSCs groups (low dose, medium dose, and high dose), with 24 rats in each group. Twenty-four hours after successful establishment of the neonatal rat white matter injury model, the WMI group was injected with sterile PBS via the lateral ventricle, while the hUC-MSCs groups received injections of hUC-MSCs at different doses. At 14 and 21 days post-modeling, hematoxylin and eosin staining was used to observe pathological changes in the tissues around the lateral ventricles. Real-time quantitative polymerase chain reaction was used to detect the quantitative expression of myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) mRNA in the brain tissue. Immunohistochemistry was employed to observe the expression levels of GFAP and neuron-specific nuclear protein (NeuN) in the tissues around the lateral ventricles. TUNEL staining was used to observe cell apoptosis in the tissues around the lateral ventricles. At 21 days post-modeling, the Morris water maze test was used to observe the spatial learning and memory capabilities of the neonatal rats. RESULTS: At 14 and 21 days post-modeling, numerous cells with nuclear shrinkage and rupture, as well as disordered arrangement of nerve fibers, were observed in the tissues around the lateral ventricles of the WMI group and the low dose group. Compared with the WMI group, the medium and high dose groups showed alleviated pathological changes; the arrangement of nerve fibers in the medium dose group was relatively more orderly compared with the high dose group. Compared with the WMI group, there was no significant difference in the expression levels of MBP and GFAP mRNA in the low dose group (P>0.05), while the expression levels of MBP mRNA increased and GFAP mRNA decreased in the medium and high dose groups. The expression level of MBP mRNA in the medium dose group was higher than that in the high dose group, and the expression level of GFAP mRNA in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the protein expression of GFAP and NeuN in the low dose group (P>0.05), while the expression of NeuN protein increased and GFAP protein decreased in the medium and high dose groups. The expression of NeuN protein in the medium dose group was higher than that in the high dose group, and the expression of GFAP protein in the medium dose group was lower than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the number of apoptotic cells in the low dose group (P>0.05), while the number of apoptotic cells in the medium and high dose groups was less than that in the WMI group, and the number of apoptotic cells in the medium dose group was less than that in the high dose group (P<0.05). Compared with the WMI group, there was no significant difference in the escape latency time in the low dose group (P>0.05); starting from the third day of the latency period, the escape latency time in the medium dose group was less than that in the WMI group (P<0.05). The medium and high dose groups crossed the platform more times than the WMI group (P<0.05). CONCLUSIONS: Low dose hUC-MSCs may yield unsatisfactory repair effects on WMI in neonatal rats, while medium and high doses of hUC-MSCs have significant repair effects, with the medium dose demonstrating superior efficacy.


Assuntos
Animais Recém-Nascidos , Transplante de Células-Tronco Mesenquimais , Ratos Sprague-Dawley , Cordão Umbilical , Substância Branca , Animais , Ratos , Humanos , Cordão Umbilical/citologia , Substância Branca/patologia , Substância Branca/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/análise , Células-Tronco Mesenquimais , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/análise , Proteína Básica da Mielina/metabolismo , Masculino , Apoptose , Feminino , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473856

RESUMO

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Assuntos
Furina , Glicoproteínas de Membrana , Animais , Furina/metabolismo , Proteína Básica da Mielina , Proteínas de Membrana/metabolismo , Peptídeos , Mamíferos/metabolismo
3.
Neuroreport ; 35(3): 185-190, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38305106

RESUMO

The deamination of arginine and its conversion to citrulline is a modification observed in positively charged proteins such as histones or myelin basic protein (MBP). This reaction is catalyzed by peptidyl arginine deiminase (PAD), whose abnormal activation is associated with autoimmune diseases like rheumatoid arthritis and multiple sclerosis. However, the mechanisms that trigger PAD activation and the pathophysiological processes involved in hypercitrullination remain unknown. In this study, we investigated the interaction between PAD and various charged isomers of MBP, each differing in the degree of post-translational modification. Immunoprecipitation experiments were conducted to examine the binding between PAD and the different charge isomers of MBP. Our findings revealed that the phosphorylated forms of MBP (C3 and C4) exhibited a higher affinity for PAD compared to the unmodified (C1) and fully citrullinated forms (C8). Additionally, we observed that only in the presence of the unmodified C1 isomer did PAD undergo autocitrullination, which was inhibited by the endogenous guanidine-containing component, creatine. In the presence of other isomers, PAD did not undergo autocitrullination. Furthermore, we found that the unmodified isomer of MBP-C1 contains methylated arginines, which were not affected by the pre-treatment with PAD. Based on our findings, we propose that the increased phosphorylation of central threonines in the original MBP may trigger PAD activation, leading to increased citrullination of the protein and subsequent disorganization of the myelin sheath. These insights contribute to a better understanding of the underlying mechanisms in autoimmune diseases associated with hypercitrullination, potentially opening new avenues for therapeutic interventions.


Assuntos
Doenças Autoimunes , Proteína Básica da Mielina , Proteína-Arginina Desiminase do Tipo 2 , Humanos , Arginina/metabolismo , Doenças Autoimunes/metabolismo , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteína-Arginina Desiminase do Tipo 2/metabolismo
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(10): 1810-1814, 2023 Oct 20.
Artigo em Chinês | MEDLINE | ID: mdl-37933659

RESUMO

OBJECTIVE: To observe the effect of propofol on the expression of myelin basic protein (MBP) in developing zebrafish and explore the possible mechanisms. METHODS: A total of 180 zebrafish embryos at 6-48 h post-fertilization were randomly allocated into 3 equal groups and raised in fresh water (control group), water containing dimethyl sulfoxide (DMSO group) and water containing 30 µg/mL propofol (propofol group). On 3, 4, 5, 6, 7, 10 d post-fertilization, the juvenile fish were collected for detection of mRNA and protein expressions of MBP using RT-qPCR and Western blotting. TUNEL assay and immunofluorescence assay were used to detect apoptosis of the oligodendrocytes of the fish at 3 d post-fertilization; RT-qPCR and Western blotting were performed to detect the expressions of apoptosis-related factors caspase-8, caspase-9 and caspase-3. RESULTS: Compared with the control group, the fish with propofol exposure showed significantly decreased mRNA and protein expression of MBP at 3-7 d post-fertilization (P<0.05) with increased apoptosis of the oligodendrocytes and upregulated expressions of caspase-8, caspase-9 and caspase-3 at both the mRNA and protein levels. CONCLUSION: Propofol persistently inhibits MBP expression in developing zebrafish within a short term possibly by mediating apoptosis of the oligodendrocytes.


Assuntos
Proteína Básica da Mielina , Propofol , Peixe-Zebra , Animais , Apoptose , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Proteína Básica da Mielina/metabolismo , Propofol/farmacologia , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia
5.
Biomolecules ; 13(10)2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37892207

RESUMO

The myelin sheath provides insulation to the brain's neuron cells, which aids in signal transmission and communication with the body. Degenerated myelin hampers the connection between the glial cells, which are the front row responders during traumatic brain injury mitigation. Thus, the structural integrity of the myelin layer is critical for protecting the brain tissue from traumatic injury. At the molecular level, myelin consists of a lipid bilayer, myelin basic proteins (MBP), proteolipid proteins (PLP), water and ions. Structurally, the myelin sheath is formed by repeatedly wrapping forty or more myelin layers around an axon. Here, we have used molecular dynamic simulations to model and capture the tensile response of a single myelin layer. An openly available molecular dynamic solver, LAMMPS, was used to conduct the simulations. The interatomic potentials for the interacting atoms and molecules were defined using CHARMM force fields. Following a standard equilibration process, the molecular model was stretched uniaxially at a deformation rate of 5 Å/ps. We observed that, at around 10% applied strain, the myelin started to cohesively fail via flaw formation inside the bilayers. Further stretching led to a continued expansion of the defect inside the bilayer, both radially and transversely. This study provides the cellular-level mechanisms of myelin damage due to mechanical load.


Assuntos
Bainha de Mielina , Neuroglia , Bainha de Mielina/metabolismo , Neuroglia/metabolismo , Axônios/metabolismo , Proteína Básica da Mielina/química , Bicamadas Lipídicas/química
6.
J Autoimmun ; 139: 103092, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37506490

RESUMO

The post-translational modification citrullination has been proposed to play a role in the pathogenesis of multiple sclerosis (MS). Myelin basic protein (MBP) is a candidate autoantigen which is citrullinated to a minor extent under physiological conditions and hypercitrullinated in MS. We examined immune cell responses elicited by hypercitrullinated MBP (citMBP) in cultures of mononuclear cells from 18 patients with MS and 42 healthy donors (HDs). The immunodominant peptide of MBP, MBP85-99, containing citrulline in position 99, outcompeted the binding of native MBP85-99 to HLA-DR15, which is strongly linked to MS. Moreover, using the monoclonal antibody MK16 as probe, we observed that B cells and monocytes from HLA-DR15+ patients with MS presented MBP85-99 more efficiently after challenge with citMBP than with native MBP. Both citMBP and native MBP induced proliferation of CD4+ T cells from patients with MS as well as TNF-α production by their B cells and CD4+ T cells, and citrullination of MBP tended to enhance TNF-α secretion by CD4+ T cells from HLA-DR15+ patients. Unlike native MBP, citMBP induced differentiation into Th17 cells in cultures from HDs, while neither form of MBP induced Th17-cell differentiation in cultures from patients with MS. These data suggest a role for citrullination in the breach of tolerance to MBP in healthy individuals and in maintenance of the autoimmune response to MBP in patients with MS.


Assuntos
Esclerose Múltipla , Humanos , Citrulinação , Proteína Básica da Mielina , Células Th17/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
PeerJ ; 11: e15584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431466

RESUMO

The antibodies of schizophrenic patients that hydrolyze myelin basic protein (MBP) have been actively studied recently, but the mechanism of the catalytic properties of immunoglobulin molecules remains unknown. Determination of specific immunoglobulin sequences associated with the high activity of MBP proteolysis will help to understand the mechanisms of abzyme catalysis. In the course of comparative mass spectrometric analysis of IgG peptides from the blood serum of patients with acute schizophrenia and healthy people, 12 sequences were identified, which were found only in antibodies that hydrolyze MBP. These sequences belong to IgG heavy chains and κ- and λ-type light chains, with eight of them belonging to variable domains. The content of peptides from the variable regions of the light chains does not correlate with the proteolytic activity of IgG to MBP in patients with schizophrenia, whereas for two sequences from the variable regions of the heavy chains (FQ(+0.98)GWVTMTR and *LYLQMN(+0.98)SLR), an increase in activity with increasing their concentration. The results suggest that these sequences may be involved in one way or another in MBP hydrolysis.


Assuntos
Anticorpos Catalíticos , Proteína Básica da Mielina , Humanos , Catálise , Cadeias lambda de Imunoglobulina , Peptídeos , Imunoglobulina G
8.
J Neurochem ; 166(2): 280-293, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37309616

RESUMO

Neuroinflammation has been reported to be associated with white matter injury (WMI) after subarachnoid hemorrhage (SAH). As the main resident immune cells of the brain, microglia can be activated into proinflammatory and anti-inflammatory phenotypes. Toll-like receptor 4 (TLR4), expressed on the surface of the microglia, plays a key role in microglial inflammation. However, the relationship between TLR4, microglial polarization, and WMI following SAH remains unclear. In this study, a total of 121 male adult C57BL/6 wild-type (WT) mice, 20 WT mice at postnatal day 1 (P1), and 41 male adult TLR4 gene knockout (TLR4-/-) mice were used to investigate the potential role of TLR4-induced microglial polarization in early WMI after SAH by radiological, histological, microstructural, transcriptional, and cytological evidence. The results indicated that microglial inflammation was associated with myelin loss and axon damage, shown as a decrease in myelin basic protein (MBP), as well as increase in degraded myelin basic protein (dMBP) and amyloid precursor protein (APP). Gene knockout of TLR4 revised microglial polarization toward the anti-inflammatory phenotype and protected the white matter at an early phase after SAH (24 h), as shown through reduction of toxic metabolites, preservation of myelin, reductions in APP accumulation, reductions in white matter T2 hyperintensity, and increases in FA values. Cocultures of microglia and oligodendrocytes, the cells responsible for myelin production and maintenance, were established to further elucidate the relationship between microglial polarization and WMI. In vitro, TLR4 inhibition decreased the expression of microglial MyD88 and phosphorylated NF-κB, thereby inhibiting M1 polarization and mitigating inflammation. Decrease in TLR4 in the microglia increased preservation of neighboring oligodendrocytes. In conclusion, microglial inflammation has dual effects on early WMI after experimental SAH. Future explorations on more clinically relevant methods for modulating neuroinflammation are warranted to combat stroke with both WMI and gray matter destruction.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Substância Branca , Camundongos , Animais , Masculino , Microglia/metabolismo , Hemorragia Subaracnóidea/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/farmacologia , Substância Branca/patologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Inflamação/patologia , Lesões Encefálicas/patologia , Anti-Inflamatórios/farmacologia
9.
Glia ; 71(10): 2343-2355, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37272718

RESUMO

Oligodendrocytes produce lipid-rich myelin sheaths that provide metabolic support to the underlying axon and facilitate saltatory conduction. Oligodendrocyte mitochondria supply the bulk of energy and carbon-chain backbones required for lipid synthesis. The sparsity of mitochondria in the myelin sheath suggests that tight regulation of mitochondrial trafficking is crucial for their efficient distribution in the cell. In particular, retention of mitochondria at axoglial junctions would support local lipid synthesis and membrane remodeling during myelination. How mitochondrial docking in oligodendrocytes is regulated is not known. Our findings indicate that syntaphilin (SNPH), a mitochondrial docking protein that has been characterized in neurons, is expressed by oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in vitro and present in the myelin sheath in vivo. We have previously reported that bath application of netrin-1 promotes the elaboration of myelin basic protein-positive membranes, and that localized presentation of a netrin-1 coated microbead results in rapid accumulation of mitochondria at the site of oligodendrocyte-bead adhesion. Here we show that netrin-1 increases the redistribution of SNPH to oligodendrocyte processes during the expansion of myelin basic protein-positive membranes and that SNPH clusters at the oligodendrocyte plasma membrane at sites of adhesion with netrin-1-coated beads where mitochondria are retained. These findings suggest roles for SNPH in oligodendrocytes regulating netrin-1-mediated mitochondrial docking and myelin membrane expansion.


Assuntos
Proteína Básica da Mielina , Bainha de Mielina , Bainha de Mielina/metabolismo , Proteína Básica da Mielina/metabolismo , Netrina-1/metabolismo , Oligodendroglia/metabolismo , Mitocôndrias/metabolismo , Lipídeos
10.
Artigo em Inglês | MEDLINE | ID: mdl-37369602

RESUMO

BACKGROUND AND OBJECTIVE: Despite accumulating evidence of intrathecal inflammation in patients with primary progressive multiple sclerosis (PPMS), immunomodulatory and suppressive treatment strategies have proven unsuccessful. With this study, we investigated the involvement of CD20+ T cells and the effect of dimethyl fumarate on CD20+ T cells in PPMS. METHODS: The main outcomes in this observational, case-control study were flow cytometry assessments of blood and CSF CD20+ T cells and ELISA measurements of myelin basic protein and neurofilament light chain in untreated patients with PPMS and patients treated for 48 weeks with dimethyl fumarate or placebo. MRI measures included new and enlarging T2-weighted lesions over 48 weeks and lesion, normal-appearing white matter, cortical, and thalamic volume. RESULTS: Assessing CD20+ T cells in patients with PPMS and controls showed an increased percentage of CD20+ T cells in the blood of untreated patients and a strong enrichment in the CSF. In addition, a higher frequency of CD8+CD20+ T cells in the CSF correlated with a higher concentration of myelin basic protein and T2-weighted lesion volume and with a lower normal-appearing white matter and thalamus volume. Furthermore, CD8+CD20+ T cells were associated with the development of new T2 lesions. After 48 weeks of treatment with dimethyl fumarate, total T cells in CSF were reduced; however, CD20+ T cells were unaffected. DISCUSSION: This study shows an association between intrathecal CD8+CD20+ T cells, white matter injury, and thalamic atrophy in PPMS, suggesting a role of CD8+CD20+ T cells in the immunopathogenesis of PPMS. The results also suggest that limited efficacy of dimethyl fumarate in PPMS may, at least partly, be a consequence of failure to suppress CD8+CD20+ T cells in CSF.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Estudos de Casos e Controles , Linfócitos T CD8-Positivos , Fumarato de Dimetilo/farmacologia , Fumarato de Dimetilo/uso terapêutico , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/patologia , Proteína Básica da Mielina , Linfócitos T
11.
Restor Neurol Neurosci ; 41(3-4): 83-89, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355916

RESUMO

BACKGROUND: The hippocampus is highly vulnerable to damage in the brain ischemia-reperfusion injury model. Leuprolide acetate has been shown to promote neurological recovery after injury in various regions of the central nervous system. OBJECTIVE: The objective of this study was to assess the histology of the hippocampus and the expression of neuronal recovery markers, specifically the 200 kDa neurofilaments and the myelin basic protein, in rats with brain ischemia-reperfusion injury treated with leuprolide acetate. METHODS: The rats were divided into three groups: Sham, ischemia-reperfusion with saline solution, and ischemia-reperfusion treated with leuprolide acetate. Coronal brain slices were obtained and stained with hematoxylin-eosin. The histological analysis involved quantifying the number of neurons in the hippocampal regions CA1, CA3 and DG. The myelin basic protein and neurofilaments were quantified using western blot. RESULTS: The number of neurons in CA1 and DG was significantly higher in the leuprolide acetate group compared to the untreated group. Additionally, the expression of neurofilament and myelin basic protein markers was significantly increased in rats treated with leuprolide acetate compared to the untreated rats. CONCLUSIONS: Leuprolide acetate promotes the recovery of hippocampal neurons in an acute brain ischemia-reperfusion injury model. These findings suggest that leuprolide acetate could be a potential therapeutic intervention for reversing damage in hippocampal ischemic lesions.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Leuprolida/farmacologia , Leuprolida/uso terapêutico , Leuprolida/metabolismo , Proteína Básica da Mielina/metabolismo , Hipocampo/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Isquemia/metabolismo , Isquemia Encefálica/patologia , Reperfusão
12.
Biochim Biophys Acta Biomembr ; 1865(7): 184179, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37244538

RESUMO

Myelin basic protein (MBP) is an intrinsically disordered protein and in the central nervous system (CNS) mainly responsible for connecting the cytoplasmic surfaces of the multilamellar, compact myelin. Increased posttranslational modification of MBP is linked to both, the natural development (from adolescent to adult brains) of myelin, and features of multiple sclerosis. Here, we study how a combination of this intrinsically disordered myelin protein with varying the natural cholesterol content may alter the characteristics of myelin-like membranes and interactions between these membranes. Large unilamellar vesicles (LUVs) with a composition mimicking the cytoplasmic leaflet of myelin were chosen as the model system, in which different parameters contributing to the interactions between the lipid membrane and MBP were investigated. While we use cryo-transmission electron microscopy (TEM) for imaging, dynamic light scattering (DLS) and electrophoretic measurements through continuously-monitored phase-analysis light scattering (cmPALS) were used for a more global overview of particle size and charge, and electron paramagnetic resonance (EPR) spectroscopy was utilized for local behavior of lipids in the vesicles' membranes in aqueous solution. The cholesterol content was varied from 060 % in these LUVs and measurements were performed in the presence and absence of MBP. We find that the composition of the lipid layers is relevant to the interaction with MBP. Not only the size, the shape and the aggregation behavior of the vesicles depend on the cholesterol content, but also within each membrane, cholesterol's freedom of movement, its environmental polarity and its distribution were found to depend on the content using the EPR-active spin-labeled cholesterol (CSOSL). In addition, DLS and EPR measurements probing the transition temperatures of the lipid phases allow a correlation of specific behavior with the human body temperature of 37 °C. Overall, our results aid in understanding the importance of the native cholesterol content in the healthy myelin membrane, which serves as the basis for stable and optimum protein-bilayer interactions. Although studied in this specific myelin-like system, from a more general and materials science-oriented point of view, we could establish how membrane and vesicle properties depend on cholesterol and/or MBP content, which might be useful generally when specific membrane and vesicle characteristics are sought for.


Assuntos
Proteína Básica da Mielina , Bainha de Mielina , Adulto , Humanos , Adolescente , Bainha de Mielina/metabolismo , Proteína Básica da Mielina/química , Lipossomas Unilamelares/química , Lipídeos , Colesterol/metabolismo
13.
Int J Mol Sci ; 24(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37175866

RESUMO

Multiple sclerosis (MS) is the chronic inflammatory demyelinating disease of the CNS. Relapsing-remitting MS (RRMS) is the most common type of MS. However, the mechanisms of relapse and remission in MS have not been fully understood. While SJL mice immunized with proteolipid protein (PLP) develop relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE), we have recently observed that some of these mice were resistant to the active induction of relapsing EAE after initial clinical and histological symptoms of EAE with a severity similar to the relapsing EAE mice. To clarify the mechanism of relapsing, we examined myelin morphology during PLP139-151-induced RR-EAE in the SJL mice. While RR-EAE mice showed an increased EAE severity (relapse) with CNS inflammation, demyelination with abnormal myelin morphology in the spinal cord, the resistant mice exhibited a milder EAE phenotype with diminished relapse. Compared with the RR-EAE mice, the resistant mice showed less CNS inflammation, demyelination, and abnormalities of the myelin structure. In addition, scanning electron microscopic (SEM) analysis with the osmium-maceration method displayed ultrastructural abnormalities of the myelin structure in the white matter of the RR-EAE spinal cord, but not in that of the resistant mice. While the intensity of myelin staining was reduced in the relapsing EAE spinal cord, immunohistochemistry and immunoblot analysis revealed that the 21.5 kDa isoform of degenerating myelin basic protein (MBP) was specifically induced in the relapsing EAE spinal cord. Taken together, the neuroinflammation-induced degenerating 21 kDa isoform of MBP sheds light on the development of abnormal myelin on the relapse of MS pathogenesis.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Encefalomielite Autoimune Experimental/patologia , Proteína Básica da Mielina , Proteína Proteolipídica de Mielina , Recidiva Local de Neoplasia/patologia , Medula Espinal/patologia , Esclerose Múltipla/patologia , Camundongos Endogâmicos , Doença Crônica , Inflamação/patologia , Encéfalo/patologia , Isoformas de Proteínas
14.
Int J Mol Sci ; 24(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37239982

RESUMO

Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibodies-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs-abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA-histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA-histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA-histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs-abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed.


Assuntos
Encefalomielite Autoimune Experimental , Histonas , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Autoanticorpos/metabolismo
15.
Neural Plast ; 2023: 8938674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006814

RESUMO

Several microRNAs (miRNAs), including miR-23 and miR-27a have been reportedly involved in regulating myelination in the central nervous system. Although miR-23 and miR-27a form clusters in vivo and the clustered miRNAs are known to perform complementary functions, the role of these miRNA clusters in myelination has not been studied. To investigate the role of miR-23-27-24 clusters in myelination, we generated miR-23-27-24 cluster knockout mice and evaluated myelination in the brain and spinal cord. Our results showed that 10-week-old knockout mice had reduced motor function in the hanging wire test compared to the wild-type mice. At 4 weeks, 10 weeks, and 12 months of age, knockout mice showed reduced myelination compared to wild-type mice. The expression levels of myelin basic protein and myelin proteolipid protein were also significantly lower in the knockout mice compared to the wild-type mice. Although differentiation of oligodendrocyte progenitor cells to oligodendrocytes was not inhibited in the knockout mice, the percentage of oligodendrocytes expressing myelin basic protein was significantly lower in 4-week-old knockout mice than that in wild-type mice. Proteome analysis and western blotting showed increased expression of leucine-zipper-like transcription regulator 1 (LZTR1) and decreased expression of R-RAS and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) in the knockout mice. In summary, loss of miR-23-27-24 clusters reduces myelination and compromises motor functions in mice. Further, LZTR1, which regulates R-RAS upstream of the ERK1/2 pathway, a signal that promotes myelination, has been identified as a novel target of the miR-23-27-24 cluster in this study.


Assuntos
MicroRNAs , Proteína Básica da Mielina , Camundongos , Animais , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Sistema Nervoso Central , Diferenciação Celular/fisiologia , Camundongos Knockout
16.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049736

RESUMO

Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin-proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed.


Assuntos
Anticorpos Catalíticos , Encefalomielite Autoimune Experimental , Animais , Camundongos , Histonas/metabolismo , Hidrólise , Proteína Básica da Mielina/metabolismo , Camundongos Endogâmicos C57BL , DNA/metabolismo , Glicoproteína Mielina-Oligodendrócito , Anticorpos Catalíticos/metabolismo , Imunoglobulina G
17.
Cells ; 12(7)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37048047

RESUMO

A total of 1 in 20 infants born annually are exposed to alcohol prenatally, which disrupts neurodevelopment and results in several disorders categorized under the umbrella term Fetal Alcohol Spectrum Disorders (FASD). Children and adolescents affected by FASD exhibit delayed maturation of cerebral white matter, which contributes to deficits in executive function, visuospatial processing, sensory integration, and interhemispheric communication. Research using animal models of FASD have uncovered that oligoglia proliferation, differentiation, and survival are vulnerable to alcohol teratogenesis in the male brain due in part to the activation of the neuroimmune system during gestation and infancy. A comprehensive investigation of prenatal alcohol exposure on white matter development in the female brain is limited. This study demonstrated that the number of mature oligodendrocytes and the production of myelin basic protein were reduced first in the female corpus callosum following alcohol exposure in a rat model of FASD. Analysis of myelin-related genes confirmed that myelination occurs earlier in the female corpus callosum compared to their counterparts, irrespective of postnatal treatment. Moreover, dysregulated oligodendrocyte number and myelin basic protein production was observed in the male and female FASD brain in adolescence. Targeted interventions that support white matter development in FASD-affected youth are nonexistent. The capacity for an adolescent exercise intervention to upregulate corpus callosum myelination was evaluated: we discovered that volunteer exercise increases the number of mature oligodendrocytes in alcohol-exposed female rats. This study provides critical evidence that oligoglia differentiation is difficult but not impossible to induce in the female FASD brain in adolescence following a behavioral intervention.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Substância Branca , Humanos , Feminino , Masculino , Ratos , Gravidez , Animais , Corpo Caloso , Proteína Básica da Mielina , Encéfalo , Etanol/toxicidade
18.
Neurobiol Dis ; 180: 106093, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36948260

RESUMO

Untreated phenylketonuria (PKU) patients and PKU animal models show hypomyelination in the central nervous system and white matter damages, which are accompanied by myelin basic protein (MBP) impairment. Despite many assumptions, the primary explanation of the mentioned cerebral outcomes remains elusive. In this study, MBP protein and mRNA expression on brains of wild type (WT) and phenylketonuric (ENU2) mice were analyzed throughout mice lifespan (14-60-180-270-360-540 post-natal days, PND). The results confirmed the low MBP expression at first PND times, while revealed an unprecedented progressive MBP protein expression recovery in aged ENU2 mice. Unexpectedly, unaltered MBP mRNA expression between WT and ENU2 was always observed. Additionally, for the same time intervals, a significant decrease of the phenylalanine concentration in the peripheral blood and brain of ENU2 mice was detected, to date, for the first time. In this scenario, a translational hindrance of MBP during initial and late cerebral development in ENU2 mice was hypothesized, leading to the execution of a microRNA microarray analysis on 60 PND brains, which was followed by a proteomic assay on 60 and 360 PND brains in order to validate in silico miRNA-target predictions. Taken together, miR-218-1-3p, miR-1231-3p and miR-217-5p were considered as the most impactful microRNAs, since a downregulation of their potential targets (MAG, CNTNAP2 and ANLN, respectively) can indirectly lead to a low MBP protein expression. These miRNAs, in addition, follow an opposite expression trend compared to MBP during adulthood, and their target proteins revealed a complete normalization in aged ENU2 mice. In conclusion, these results provide a new perspective on the PKU pathophysiology understanding and on a possible treatment, emphasizing the potential modulating role of differentially expressed microRNAs in MBP expression on PKU brains during PKU mouse lifespan.


Assuntos
MicroRNAs , Fenilcetonúrias , Camundongos , Animais , MicroRNAs/genética , Proteína Básica da Mielina , Longevidade , Proteômica , Fenilcetonúrias/genética , Fenilcetonúrias/complicações , Fenilcetonúrias/metabolismo , RNA Mensageiro , Proteínas de Membrana , Proteínas do Tecido Nervoso
19.
Clin Immunol ; 250: 109286, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907539

RESUMO

Neuro-Behçet's disease (NBD) contributes to poor prognosis in BD patients which lacks reliable laboratory biomarkers in assessing intrathecal injury. This study aimed to determine the diagnostic value of myelin basic protein (MBP), an indicator of central nervous system (CNS) myelin damage, in NBD patients and disease controls. Paired samples of cerebrospinal fluid (CSF) and serum MBP were measured using ELISA, while IgG and Alb were routinely examined before the MBP index was developed. CSF and serum MBP in NBD were significantly higher than in NIND, which could distinguish NBD from NIND with a specificity exceeding 90%, moreover, they could also be excellent discriminators for acute NBD and chronic progressive ones. We found positive linkage between MBP index and IgG index. Serial MBP monitoring confirmed serum MBP's sensitive response to disease recurrences and drug effects, whereas MBP index suggests relapses prior to clinical symptoms. MBP has high diagnostic yield for NBD with demyelination and identifies CNS pathogenic processes before imaging or clinical diagnosis.


Assuntos
Síndrome de Behçet , Proteína Básica da Mielina , Humanos , Síndrome de Behçet/sangue , Síndrome de Behçet/diagnóstico , Biomarcadores/sangue , Biomarcadores/metabolismo , Sistema Nervoso Central/metabolismo , Imunoglobulina G , Proteína Básica da Mielina/sangue , Proteína Básica da Mielina/metabolismo
20.
Cells ; 12(6)2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36980286

RESUMO

Myelin basic protein (MBP) is one of the key structural elements of the myelin sheath and has autoantigenic properties in multiple sclerosis (MS). Its intracellular interaction network is still partially deconvoluted due to the unfolded structure, abnormally basic charge, and specific cellular localization. Here we used the fusion protein of MBP with TurboID, an engineered biotin ligase that uses ATP to convert biotin to reactive biotin-AMP that covalently attaches to nearby proteins, to determine MBP interactome. Despite evident benefits, the proximity labeling proteomics technique generates high background noise, especially in the case of proteins tending to semi-specific interactions. In order to recognize unique MBP partners, we additionally mapped protein interaction networks for deaminated MBP variant and cyclin-dependent kinase inhibitor 1 (p21), mimicking MBP in terms of natively unfolded state, size and basic amino acid clusters. We found that in the plasma membrane region, MBP is colocalized with adhesion proteins occludin and myelin protein zero-like protein 1, solute carrier family transporters ZIP6 and SNAT1, Eph receptors ligand Ephrin-B1, and structural components of the vesicle transport machinery-synaptosomal-associated protein 23 (SNAP23), vesicle-associated membrane protein 3 (VAMP3), protein transport protein hSec23B and cytoplasmic dynein 1 heavy chain 1. We also detected that MBP potentially interacts with proteins involved in Fe2+ and lipid metabolism, namely, ganglioside GM2 activator protein, long-chain-fatty-acid-CoA ligase 4 (ACSL4), NADH-cytochrome b5 reductase 1 (CYB5R1) and metalloreductase STEAP3. Assuming the emerging role of ferroptosis and vesicle cargo docking in the development of autoimmune neurodegeneration, MBP may recruit and regulate the activity of these processes, thus, having a more inclusive role in the integrity of the myelin sheath.


Assuntos
Biotina , Proteína Básica da Mielina , Proteômica , Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Proteínas , Proteômica/métodos , Mapas de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...